Inferential Statistics

- Allow researchers to generalize results to a population
- Results are based on a sample from the population
- The more the sample represents the population the more generalizable are the results

Why Inferential Statistics

 To determine if results obtained from the sample are the same as those would have been by using the population

Statistics vs. Parameters

- Statistics come from samples
- Parameters are from population
- A mean from a sample is a statistic
 A mean from a population is a parameter

The Heart of Inferential Statistics

How likely is it?

 Produces only probability statements about the population

Sampling Error

- The expected random variation between the sample mean and the population mean
- The sample or samples and the population are almost never identical
- Not a result of researchers bias, design, or error

Mean of Means

 In a normal distribution of sample means there is also a mean (a mean of means)

The Standard Error of the Mean

The standard deviation of means in the distribution of sample means

Error

 An indication that in the sample means making up the distribution contain some estimate of the population mean

Standard Error of Mean

 SE_x tells how much the <u>expected</u> sample means would differ by using different samples from the population

Normal Curve Percentages

- Approximately 68% of sample means will be between =1 and -1 standard error of the mean (like standard deviation)
- ♦ 95% will be between +2 and -2 standard error of the mean
- 99+% will be between +3 and -3standard error of the mean

The Formula

- $\bullet SE_{\overline{X}} = \underline{SD}_{\overline{N-1}}$
 - $SE_{\overline{X}} = Standard Error of mean$
 - SD = Standard Deviation for a sample
 - N = Sample size

Confidence Limits

- The estimate of probable limits within which the population mean falls
- ♦ Use the estimate of the SE_x the sample mean, x̄, and the normal curve to estimate
- As limits get further apart, confidence levels increase

Sample Size

- The major factor affecting the standard error of the mean
- As sample size increases the standard error of the mean decreases
- A large sample more likely represents the population

Population Standard Deviation

- Affects the standard error of the mean
 If deviation is large then population is spread out on variables – so should sample size
- Researchers can not control this deviation

Estimate of Standard Error

- Can calculate for:
 - Mean
 - Variability
 - Relationships
 - Relative position

The Null Hypothesis

- The chance explanation for the difference between the two samples
- States that no true difference or relationship between parameters exists - difference is only in sampling error

Research Hypothesis

 States that one method is expected to be better than another

The Null Hypothesis

- Rejection of null hypothesis is more conclusive support for a positive research hypothesis
- The test of significance to determine if the difference between the means is a true difference provides a test of the null hypothesis
- Null hypothesis is rejected as being probably false or not rejected as being probably true

Research Hypothesis

- If null hypothesis is rejected (mean for A greater than B) the research hypothesis is <u>supported</u>
- If null hypothesis is not rejected (A not greater that B) then research hypothesis not supported

Testing the Null Hypothesis

- Select a test of significance
- Select a probability level

Tests of Significance

- Helps decide if the null hypothesis can be rejected and infer that differences is significantly greater than that of chance
- Use a pre-selected probability level to determine to reject or fail to reject the null hypothesis
- Usually pre-selected levels are 5 out of 100, or 1 out of 100 chances

Statistical Tests of significance

Depend on:

- Scale of measurement represented by data
- Method of participant selection
- Number of groups
- Number of independent variables

Type I and Type II Errors

- Four possible decisions. The null hypothesis is:
- ♦ True (A=B) and researcher agrees (Good!)
- False $(A \neq B)$ and researcher agrees (Good!)
- True (A=B) and researcher disagrees (Not Good!) Type I
- ◆ False (A≠B) and researcher disagrees (Not Good!) Type II

Probability Level

- Determines the probability of committing a Type I error
- α = .05 means 5% probability of making a Type I error
- α = .01 means 1% probability of making a Type I error

Type I vs. type II error

 As the chance of committing a Type I decreases the chance of committing a Type II error increases

Deciding Probability Levels

- Made before executing the study
- Made by carefully considering the relative seriousness of committing either of these types of errors

Two Tailed Tests

- Tests of significance are almost always <u>two-</u> <u>tailed</u>
- Null hypothesis states that there is no difference between groups
- Two-tailed allows for a possibility for difference in either direction – either group mean can be higher

One Tailed Tests

- Allow for difference in only one direction
- Researcher must be reasonably certain a difference will occur in only one direction
- Has a major advantage: "easier" to obtain a significant difference
- See Figure 13.3 page 481

Degrees of Freedom

- Dependent on number of participants and number of groups
- The "control" to choose
- A choice of any 5 numbers is 5 degrees of freedom
- By limiting or controlling choice researcher limits or controls degrees of freedom

Tests of Significance (Types)

Depend on type of data

Parametrics

- Variable is normally distributed
- Data represents interval or ratio scale
- Random sample ratio of variance is known
 <u>OR</u> groups are equal

Non-Parametrics

- –No assumption or not known
- Data is ordinal or nominal
- When parametric assumption has been greatly violated

Parametric vs Nonparametric

- Parametric tests are more powerful more likely to reject a null hypothesis
- Nonparametric uses a larger sample size to reach same level of significance
- Parametric tests hypothesis that nonparametric tests cannot

The t Test

- ♦ Parametric Nonparametric
- Used to determine if two means are significantly different at a selected probability level
- Adjusts scores of small sample sizes t values required to reject a null hypothesis are higher for small samples

The t Test

- Compares actual mean difference to the difference expected by chance ($\overline{x}_1 \overline{x}_2$)
- Involves forming a ratio of the means: the numerator is the between sample means and the denominator is the chance difference if the null hypothesis were true
- The denominator becomes the standard error of the difference between means

The *t* test for Independent Samples

- Samples are not matched or related except they are selected from same population
- The two means will be different
- *t* test helps determine if the difference a probable significant difference between the two means

Statistics Symbols

α	Probability level
Х	Score
t	t test result
$\overline{\mathrm{X}}$	mean
SS	sum of squares
Σ	sum of
ΣΧ	add (or sum of) scores
Ν	number of participants
n	(w/ subscript) = the groups
SD	standard deviation
Z	z score
р	Probability values
df	degrees of freedom

t Test

Turn to pages 485 – 9 to calculate *t* test
Use table A.4 to help determine the rejection of the null hypothesis

T Test Significance

- *t* test is either significant or not significant
 not almost
- Negative values are not treated differently look up number without regarding + or –
- The table is two tailed: knowing which group is which is important

t Test for Nondependent Samples

- Used to compare groups that are matched or a single group's scores on two treatments or on pre or post tests
- Scores are expected to be correlated
- The error term of the *t* test tends to be smaller
- \bullet D = Difference D = Difference of means
- Turn to page 489-90 for an example of the calculations
- Use Table A.4 to help determine statistical significance

Analysis of Gain

To calculate

- Subtract each participants scores on pretest from post test
- Compute mean gain (or difference) for the group
- Calculate a *t* value between the two average mean differences

Analysis of Gain

Problems

- Not every participant has the same opportunity to gain - high scores on pretest cannot gain like lower scores
- Gain or difference scores are less reliable

Analysis for Pretest – Post test Groups

- Depends on group's performance on pretest
- If scores on pretest are similar and neither group has received treatment use a *t* test
- If there is a difference use an analysis of covariance

Simple Analysis of Variance (ANOVA)

- Helps determine whether a significant difference exists between two or more means at a selected probability level
- Most appropriate for scores of three or more groups
- Keeps error rate under control by using one test rather than several *t* tests

ANOVA

- Concept the total variation (variance) comes from two sources
 - Treatment (difference between groups)
 - Error variance (variance within groups)
- The F ratio is used
 - Treatment variance numerator
 - Error variance denominator

ANOVA Assumptions

- Groups are randomly formed
- Essentially same on dependent variable at beginning of study
- If treatment variance is significantly larger than error variance, there is a significant F ratio – the null hypothesis is rejected
- Turn to pages 492 5 to calculate ANOVA and Table A.5

More Symbols

K	number of treatment groups
ins	mean squares
MS _B	mean squares between groups
MS_W	mean squares within groups

Multiple Comparisons

- All are special forms of t test
- Scheffé Multiple comparison
- Tukey's HSD
- Duncan's multiple range

Scheffé Multiple Comparison

- Conservative test less likely to commit a Type I error
- It is possible to find no significant difference even though the F ratio was significant
- Used to discover where the significant difference is between means
- Used to compare combinations of means

Scheffé Multiple Comparison

 Turn to pages 497 – 9 to calculate Scheffé Multiple Comparison

Factorial Analysis of Variance

 Provides a separate F ratio for each independent variable and for each interaction

Analysis of Covariance

Used to control extraneous variables
Used to increase power

ANCOVA

- A form of ANOVA
- Statistical rather than experimental method to equate groups on one or more variables
- Adjusts post test scores for initial differences on a variable and compares the adjusted scores
- Used in causal comparative and in experimental studies

ANCOVA (cont.)

- If used with existing or already formed groups – results must be interpreted cautiously
- Increases in the power of statistical test by reducing within group variance
- Remember <u>power</u> means the ability to reject a false null hypothesis

Multiple Regression

- A prediction equation that includes more than one predictor
- Uses variables that are known to individually predict (correlate) the criterion
- Can be used with data representing and scale of measurement
- Can be used to analyze results of experimental causal – comparative, and correlational studies
- Helps determine whether variables are related and degree of the relationship

Steps in Multiple Regression

- Identify variable that best predicts criterion
- Identify variable that will most improve prediction
- The sign of the relationship (+ or -) does not indicate how good (the strength) of the prediction
- The larger the number of variables the greater the sample size needs to be

Chi Square

- ♦ Symbolized as X²
- A nonparametric test
- Appropriate when data is in form of frequency counts and percentages
- Two or more mutually exclusive categories are required
- Appropriate for nominal data
- Appropriate when categories are true or artificial

Chi Squared Test

 Compares proportions actually observed to those that were expected

One Dimensional Chi Square

- Used to compare frequencies in different categories
- Data is presented in contingency table

Two Dimensional Chi Square

- Used when frequencies are categorized along more than one dimension
- A factorial chi square

Chi Square (cont.)

 Study pages 503 – 9 for explanation to calculations for chi square

Parametric and Nonparametric Tests

 Study Figure 13.5 page 509 for types of parametric and nonparametric tests